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INTRODUCTION 
 

Albeit the process of a liquid particle moving within a gaseous phase may describe 
many different technical applications, broadly investigated in many scientific sectors and 
from many different points of view, a complete, clear and generally applicable 
mathematical modelling is still far from having been achieved. Very recently Molle et al. 
[1] gave an extremely useful experimental contribution in the field of irrigation, which 
will be of substantial usefulness for future investigations and modelling attempts. The 
results of the present paper were mainly reached by featuring the sprinkler irrigation 
context. The outcomes, if suitably adapted, may also apply to other fields and aims, such 
as pesticides distribution, heat removal or fire suppression, to name but a few. The 
fundamental problem is not just that of solving the equations ruling the development of 
the system and of the phenomenon but, upstream of that, it lies in the characterization of 
such equations. According to the Authors of this paper such hurdle can be attributed to a 
not complete understanding of the system-process evolution. This of course should not 
be taken as a form of underestimation of the analytical difficulties due to the mutual 
interrelationships between the parameters that govern the process, on the one hand, and 
the characteristics of the particles involved, on the other. In fact the main thematic 
scientific literature [2-6] tries to overcome such computational complication binding the 
solutions achieved to the specific case studies faced. In general, however, the kinematic 
analysis of sprinkler water droplets during their aerial path is devised adopting a 
Newtonian approach and considering a single-droplet system. A ballistic form of the 
same viewpoint, based on a Newtonian approach for a single-droplet system, was also 
proposed by the Authors [7-9]. This approach will be described in the paper as a 
classic/single-droplet model. Coming again to the “not complete understanding of the 
system-process evolutions” quoted above, the issue has very recently led the Authors of 
the present work to the belief that to fully comprehend and describe the phenomenon 
another viewpoint could be considered: the quantum one [10]. The results which were 
arrived at [11] were in the form of the time-dependent Schroedinger's equation (TDSE) 
and of the Scale Relativity Theory [12] written as a Riccati equation. The former, in 
particular, was written for single-droplet systems, seen as waves and material particles 
[13] and considering a Lagrangian or Eulerian description for both steady and transient 
states. The present paper, therefore, will treat further possibilities to study the kinematic 
behaviour of both single- and multi-droplet systems during their aerial path in according 
to both the classic (i.e. Newtonian) and quantum approach. Moreover, a new procedure, 
the so-called Density Functional Theory for many-particle systems, has been 
highlighted, that allows to design a common 3-D space for the assessment of both the 
droplet trajectories and their interactions, and, so, to recast the TDSE into the quantum 
fluid-dynamic (continuity and Navier-Stokes) equations [14]. 

The basic picture that emerges is that of a multi-component fluid mixture moving 
into a 3-D space under the effects of common electric and magnetic fields and classic 
and quantum potentials. 
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THE CLASSIC MECHANICAL PICTURE 
 

We do not wish to review the whole classic approach, as reported in the literature, 
but to explore the modelling possibilities in relation to the topic of the present paper. 
Anyway some more information on spray kinematics modelling (mainly Lagrangian) 
both in sprinkler irrigation and in chemical sprays contexts are also available [3,15-17], 
while spray drift Lagrangian modelling is treated in [18], and in [19]. Recently the 
Authors defined the following simplified analytical model feasible to solve water 
droplets kinematics, based on the Second Principle of Dynamics [7-9]: 
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where: 
f  [-]  - friction factor according to Fanning [20],  
g  [m·s-2] - gravity,  
h   [m]  - initial y co-ordinate,  

2
Afk ρ

=
 
[kg·m-1] - friction coefficient,

  
m  [kg]  - particle mass,  
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n  [kg]  - droplet actual mass (buoyancy), 
t  [s]  - time,  

xv0 , yv0  [m·s-1] - initial horizontal and vertical velocity components, 
x, y  [m]  - co-ordinates along the horizontal and vertical axes, 
•
x , •

y  [m·s-1] - velocities along the horizontal and vertical axes, 
••
x , ••

y  [m·s-2] - accelerations along the horizontal and vertical axes. 
 
Being the model analytical, albeit simplified, it is applicable to a variety of problems 

but the more reliable results were obtained for high Reynolds numbers. Obviously, as 
mentioned above, the model presented is one of the possible ones which can describe a 
single-droplet system from a classic viewpoint: the choice was mainly due to the fact 
that such model is tightly related to the second law of dynamics, as previously 
mentioned. To complete the topic, anyway, one may in general face the kinematic 
analysis of a multi-droplet system (i.e. composed of N droplets) from a classic viewpoint 
by means of the following analytical expression [21]:  

 

 ( ) ( )tQV
dt

tQdm k
k

k ⋅−∇=2

2
 (6) 

where:  
mk [kg]   - k-th particle mass (1 ≤ k ≤ N),  
Q  [m]   - classic trajectory,  
V [kg·m·s-2] - potential function accounting for time dependence,   

k∇  [m-1]  - 3-D gradient operator referred to the k-th particle. 
 
The classical procedure needs a quantitative approach to check how reliable the 

predictions are. In order to validate the kinematic model just reported, comparisons of 
field measurements and theoretical values have been already reported in literature [2, 6, 
8]. In conclusion the model here defined proves to be kinematically reliable in its 
predictions from a qualitative and quantitative points of view, particularly when droplets 
having a “not too small” diameter are considered. 

 
Quantum mechanics for a single particle 

 
The discrepancies between a classic Vs. quantum description, on the one hand, and 

between a single-droplet Vs. multi-droplet one, on the other, may be highlighted 
examining the following expressions for single- and multi-droplet systems (respectively) 
as compared to those in the previous section of this paper [11, 21]: 
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where: 
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F     [N]   - force,  
ħ     [J·s]   - the Dirac constant,  

ψ
ψψ

2

1

2

2
j

N

j j
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V t
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−= ∑
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h

 
[kg·m·s-2] - quantum potential, (1 ≤ j < k ≤ N).

 
 
Comparing Eq. (8) with Eq. (6), the first useful consideration is that, if the quantum 

potential tends to zero, then the quantum and classic kinematic pictures tend to coincide. But 
as a quantum viewpoint presumes that the “object” evaluated is not just a material particle but 
also a wave, then for each element of a multi-droplet system one may write the TDSE as: 
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With: 
 
 ( ) ( ) ( )[ ]txStxRtx ,exp,,

rrr
⋅=ψ  (10) 

where: 
D [m2·s-1] - diffusion coefficient,  
i [-]  - imaginary unit, 
R [-]  - wave amplitude, 
S [rad] - wave phase. 
 
Eq. (9) can be re-written in the form of continuity and Euler-type “quantum fluid-

dynamic equations”, respectively [11, 14, 22]: 
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where: 
ρ  [kg·m-3]  - density,  
vr   [m·s-1]  - velocity. 
 
Eq. (9) can be re-worked by means of Nottale's Scale Relativity theory [12] using a 

probability density function for a semi-infinite domain [23] for writing the second law of 
dynamics in the complex field: 
 

 W
t

mu
∂
∂

⋅=∇− (13) 

where: 
u  [m2·kg·s-2] - scalar potential,  
W  [m·s-1]  - complex velocity. 
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Dividing the real and imaginary parts in Eq. (13) (U is the imaginary part of W) one gets: 
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which (first equation) may be re-written for a 1-D path as a Riccati equation [24], 

being c a constant and y(x) an arbitrary function of x: 
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Both are very powerful tools as they allow for quantum particles computations 

avoiding the TDSE, even if just for 1-D domains, which is useful in particular cases as 
for instance a droplet vertical downfall. 

 
Quantum mechanics for many-particle systems 

 
Considering multi-droplet systems the TDSE needs to be suitably re-written, 

provided that water has a V-shaped molecule resulting in a magnetic field due to the 
electric potential between oxygen and hydrogen. This results in [14]: 
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being the electric potential ( )txV N ,r
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where: 
( )txK j ,
rr

 [V·T·m-3]  - vector potential for the electromagnetic field, 

( )tx j ,
r

Φ
 
[V·C-1]   - external time-dependent scalar potential,  

Nx
r

   [x, y, z]  - N-particle coordinates, 
e   [C]   - elementary charge, 

jr
r

   [m]   - location vector , 

 oV    [V·m-1]  - starting potential 
 

It is now possible to write the continuity equation: 
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and the Euler-type equation: 
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where: 
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[V·m-1] - external electric field, 

( ) ),(, txcurlAtxB N
k

rrr
=      [T]    - external magnetic field. 
),( txU Nr   [C2·m-2]  - mutual inter-electrical Coulomb repulsion. 

C   [-]   - numerical coefficient, 
),( txA Nr   [V·s·m-1]  - vector potential of the classic forces, 
),( txS Nr  [rad]  - wave function phase. 

 
The first integrations of Eq. (19) and Eq. (20) were carried out by Madelung [25], 

and the work was successively extended by Bohm [26, 27]. 
 

Quantum mechanics within a Density Functional Framework (DFF) 
 

The quantum mechanics approach for many-particle systems leads to the continuity 
(15) and Eulero (16) equations in configuration space, thus involving the N-particle 
density ),( tx NN r

ρ  with the 3N-D velocity field (corresponding to the k-th particle) given by: 
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The quantum mechanical equations are, however, appealing only if they are in 3-D 
space in terms of the basic variables ),( txrρ  and ),( txJ

rr  and for N-particle systems, as a 
sprinkler spray flow, to obtain the continuity and Euler equations of quantum mechanics in 
3-D space one can resort to the DFF which employs a partitioning of the particle-density 
and the current-density variables [14]. The DFF provides a single-particle based approach 
for the description of the motion of many-particle systems in 3-D space. In the context of 
the DFF, the single particle density and the current density (for the k-th particle trajectory) 
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are, respectively, given by ),(2 txR N
k

r  and ),(),( txvtx kk
rrr

ρ , as explained in the previous 
chapter, with the corresponding velocity field now expressed as: 
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where: 
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 [V·s·m-1] - effective classic forces potential.  
 
Within this ground the continuity equation can be written as: 
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and the Euler equation as: 
 

 ( ) [ ]),(),(1,),(1),(),( txQtxV
m

txBtxv
c

txE
m
e

t
txv

keffeffkeff
k rrrrrrrrrr

+∇−⎥⎦
⎤

⎢⎣
⎡ ×+−=

∂
∂

 (24) 

where: 

),(1),(),( txA
tc

txtxE effeff
rrrrr

∂
∂

−Φ−∇=
 

[V·m-1] - effective electric field, 
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=    [T]  - effective magnetic field. 
 
And the quantum potential can be expressed as: 
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which is trajectory dependent. 
 
The Euler equation (22) can be recast into the Navier-Stokes equation given by [28]: 
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where  ( )txTk ,
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represents the stress tensor expressed as: 
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The stress tensor is due to the contributions of both the quantum potential ( )txQk ,

rr
  

and the current density of the k-th particle trajectory. The jet flow is featured as a 
mixture of N components (particles) and each component, described by Euler equation, 



De Wrachien D., et al.: Water Droplets Analysis.../Agr. Eng. (2013/3), 111 - 122 119

is characterized by common effective electric and magnetic fields, and by a trajectory-
dependent quantum force of stress tensor [14]. 

For many-particle systems, as a sprinkler spray flow, the DFF represents a versatile 
tool for description of equilibrium as well as dynamical characteristics of the system. 
The basic picture is that of a multi-component fluid mixture moving in common 
effective electric and magnetic fields and component-specific quantum potentials. 

This approach leads to the concept of quantum trajectory, in analogy to the well-
established concept of classical trajectory and can represent an exciting area of research 
in sprinkler irrigation systems and, more generally, in the agricultural environment. 

 
 

THE DYNAMICAL AND NUMERICAL APPROXIMATIONS 
 

In any case an analytical “closed form” solution of the equations describing the 
quantum kinematics of particles is obviously extremely difficult and even the most 
advanced techniques often fail to achieve such purpose, albeit in the years to come this 
attempt will not be abandoned. This is why, recently, different forms of approximation 
have been introduced to treat the “quantum fluid-dynamic equations”: among those, 
literature reports numerical and dynamical approximations [29], which are both currently 
being developed. The formers may rely on Eulerian, Lagrangian or Arbitrary 
Lagrangian-Eulerian descriptions, all characterised by advantages and disadvantages. 
Lagrangian descriptions are easier in the form through which they write down the 
equations, as the grid moves with the particle and follows its evolution; but they become 
difficult to handle as, step after step, the grid becomes non-uniform with problems in the 
accuracy of the flow solution. Eulerian descriptions are complicate at the beginning of 
the simulation, due to an increased analytical complication, but prove to be more 
practical afterwards as the grid does not change with time. A uniform grid following the 
flow evolution is instead met in the Arbitrary Lagrangian-Eulerian descriptions, also 
adopted in some computational fluid dynamics codes.  

Within each of the three procedures, a given numerical approach can be further 
subdivided into different algorithms for evaluating derivatives and propagating in time 
such as the meshless Moving Least Squares (MLS) [29]. The MLS tends to average out 
any numerical error which may be accumulating in the solution ,helping by this means to 
stabilize the computational process. The advantages of Mesh based approaches include, 
also, computational efficiency, higher resolution, accuracy and stability. 

The dynamical approximations do not rely in a mathematically-simplified description 
of the problem but in a physically-simplified one by superimposing some particular 
conditions (e.g. incompressible flow) or neglecting some other characteristics considered 
not so relevant to the whole picture. Several approximate methods have been developed in 
recent years, such as the Linearized Quantum Force (LQF), the Derivative Propagation 
Method (DPM) and the Vibrational Decoupling Scheme (VDS) [22]. Obviously it would 
not be inconceivable to imagine a mixed numerical-dynamical approximation approach 
and we feel that on this aspect research will invest a part of its future resources: in relation 
to this challenge one should highlight that quantum trajectories can be treated quite 
similarly to the classic ones when considering, for the particles treated, the suitable 
relations among the dynamic and the potential part of the problem.  
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CONCLUSIONS 
 

Remarkable progress has recently been made in the development and application of 
quantum trajectories as a computational tool for solving the TDSE, which involves the 
time evolution of the wave function. In the Quantum Theory of Motion (QTM) the 
complete description of a physical system needs the simultaneous presence of the 
“wave” and the “particle”. 

The wave motion is governed by the TDSE, and the motion of a particle guided by 
that wave, for a given initial position, is characterized by a velocity defined as the 
gradient of the phase of the wave function. An assembly of initial positions will 
constitute an ensemble of particle motions (the so-called quantum trajectories or 
Bohmian trajectories), guided by the same wave, and the probability of having the 
particle in a given region of space at a given time is provided by the quantum mechanical 
TD probability density [30]. 

A crucial link between QTM and Quantum Fluid Dynamics (QFD) is the quantum 
potential. In QTM, the particles are under the stress of forces originated from both 
classical and quantum potentials, while in QFD the fluid motion takes place under the 
influence of the external classical potential augmented by the quantum potential. 

In addition to featuring water droplet ballistics in a sprinkler spray flow, novel 
quantum trajectory methods are being developed for a broad range of dynamical 
problems such as mixed classical-quantum dynamics density matrix evaluation in 
dissipative systems, and electronic non-adiabatic dynamics. 

In this context, the present investigation starts from recent hypothesis made by the 
same Authors of this paper: a water droplet could be treated as a quantum object, 
characterised both by material particle and by wave properties. Thus the TDSE may be 
employed to study the process and a parallel classic-quantum description may be 
achieved, both for single-droplet and for multi-droplet systems. The latter systems are 
not only affected by the usual fluid-dynamic parameters but the mutual repulsions and 
attractions between particles are to be accounted for, in the form of electric-magnetic 
potentials bound to the molecular structure of water: this allows one to re-write the 
TDSE and the so-called “quantum fluid-dynamic equations” in a novel and more 
complete form. Future studies will deepen the novel modelling approach suggested to 
make it more and more suitable for practical applications. 
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Sažetak: Konstrukcija sistema za navodnjavanje sa rasprskivačima uvek je praćena 
potpunim razumevanjem kinematike kretanja kapljica kroz vazduh. Rešavanje ovog 
problema uključuje, kako teorijska, tako i eksperimentalna razmatranja. Među teorijskim 
studijama, klasični mehanički pristup, zasnovan na Njutnovim zakonima, daje korisno 
sredstvo za opis putanja kretanja kapljica vode od rasprskivača do tla. Problem postaje još 
komplikovaniji kad se ne posmatra samo jedna sama kapljica, već system više kapljica. 
Pored inter-parametarskih zavisnosti, proučavano je i među-kapljično uzajamno odbijanje, 
najviše usled električnih interakcija između atoma vodonika i kiseonika iz različitih 
molekula vode. Alternativa tradicionalnim klasičnim postupcima za analizu dinamike 
vodenih kapljica pri rasprskavanju, nedavno je ponuđena u obliku kvantnog pristupa. U 
ovom kontekstu treba proučiti ceo sistem klasičnog i kvantnog pristupa kao i alternative 
jedno-kapljične i više-kapljične strukture, pa su ovo osnovni ciljevi predstavljenog rada, 
koji se fokusira na teorijski deo problema, čime naglašava nove perspektive i celovitije 
obuhvata fenomen toka rasprsnutog spreja. Uopšte, novi pristup vodi do koncepta kvantne 
putanje u analogiji sa dobro ustanovljenim konceptom klasične trajektorije i dozvoljava da 
se prerade klasične jednačine dinamike fluida u tzv. kvantne jednačine.  

Ključne reči: kinematika čestica spreja, jedno- i više-kapljični sistemi, klasična i 
kvantna mehanika, kapljice rasprsnute vode, matematičko modeliranje  

 
Prijavljen: 
Submitted: 02.07.2013. 

Ispravljen: 
Revised: 17.07.2013. 

Prihvaćen: 
Accepted: 02.08.2013. 

 


